A cutting-plane method for contiguity-constrained spatial aggregation
نویسندگان
چکیده
Aggregating areas into larger regions is a common problem in spatial planning, geographic information science, and cartography. The aim can be to group administrative areal units into electoral districts or sales territories, in which case the problem is known as districting. In other cases, area aggregation is seen as a generalization or visualization task, which aims to reveal spatial patterns in geographic data. Despite these different motivations, the heart of the problem is the same: given a planar partition, one wants to aggregate several elements of this partition to regions. These often must have or exceed a particular size, be homogeneous with respect to some attribute, contiguous, and geometrically compact. Even simple problem variants are known to be NP-hard, meaning that there is no reasonable hope for an efficient exact algorithm. Nevertheless, the problem has been attacked with heuristic and exact methods. In this article we present a new exact method for area aggregation and compare it with a state-of-the-art method for the same problem. Our method results in a substantial decrease of the running time and, in particular, allowed us to solve certain instances that the existing method could not solve within five days. Both our new method and the existing method use integer linear programming, which allows existing problem solvers to be applied. Other than the existing method, however, our method employs a cutting-plane method, which is an advanced constraint-handling approach. We discuss this approach in detail and present its application to the aggregation of areas in choropleth maps.
منابع مشابه
An Improved Cutting Plane method for the solution of Probabilistic Constrained Problem with Discrete Random Variables
We consider a probabilistic constrained stochastic programming problem with discrete random variables. Two methods, a cutting plane and a column generation method have already been developed for the solution of the problem. In this paper we blend them together and obtain a method that is faster than the earlier ones. We also present a refined algorithm for the generation of p-level efficient po...
متن کاملIterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملComparison of two integration schemes for a micropolar plasticity model
Micropolar plasticity provides the capability to carry out post-failure simulations of geo-structures due to microstructural considerations and embedded length scale in its formulation. An essential part of the numerical implementation of a micropolar plasticity model is the integration of the rate constitutive equations. Efficiency and robustness of the implementation hinge on the type of int...
متن کاملA Feasible Directions Method for Nonsmooth Convex Optimization
We propose a new technique for minimization of convex functions not necessarily smooth. Our approach employs an equivalent constrained optimization problem and approximated linear programs obtained with cutting planes. At each iteration a search direction and a step length are computed. If the step length is considered “non serious”, a cutting plane is added and a new search direction is comput...
متن کاملHomogeneous Analytic Center Cutting Plane Methods for Convex Problems and Variational Inequalities
In this paper we consider a new analytic center cutting plane method in a projective space. We prove the eeciency estimates for the general scheme and show that these results can be used in the analysis of a feasibility problem, the variational inequality problem and the problem of constrained minimization. Our analysis is valid even for the problems whose solution belongs to the boundary of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Spatial Information Science
دوره 15 شماره
صفحات -
تاریخ انتشار 2017